skip to main content


Search for: All records

Creators/Authors contains: "Kozdon, Reinhard"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available August 1, 2024
  2. The early Eocene Climatic Optimum (EECO; ~ 53.3 to 49.1 Ma) was a period of the warmest sustained temperatures of the Cenozoic caused by perturbations to the global carbon cycle. Deep sea sediment cores and the microfossils preserved within them are the primary sources of information for these changes in climate and global carbon cycling but are subject to diagenetic alteration after deposition. One of the great challenges in paleoclimate research is determining how to accurately interpreting the proxy record by identifying the amount of chemical alteration of the isotopic and elemental compositions locked within microfossils such as foraminifera. The planktic foraminifera record has been biased by digenesis, provoking questions about the strength of the latitudinal temperature gradient throughout the EECO, specifically with respect to mismatches between proxy data and climate model simulations that remain unresolved. To investigate this question, we selected three deep sea sites that span across the Pacific Ocean, ODP Sites 865, 1209 and DSDP Site 207. From these sediments we extracted carefully screened planktic foraminifera and conducted analysis by two independent approaches on splits of the same individual foraminiferal shells. We measured the δ18O composition by conventional analysis (gas source mass spectrometry), and Mg/Ca ratios on fragments of the same shells by LA-ICP-MS that allows for a careful diagenetic screening. We then independently estimate sea surface temperatures and compare records to quantify the extent of bias in the planktonic foraminifera record. This approach helps to reassess the latitudinal temperature gradients across the EECO. 
    more » « less
  3. Abstract Rationale

    The use of secondary ion mass spectrometry (SIMS) to perform micrometer‐scalein situcarbon isotope (δ13C) analyses of shells of marine microfossils called planktic foraminifers holds promise to explore calcification and ecological processes. The potential of this technique, however, cannot be realized without comparison to traditional whole‐shell δ13C values measured by gas source mass spectrometry (GSMS).

    Methods

    Paired SIMS and GSMS δ13C values measured from final chamber fragments of the same shell of the planktic foraminiferOrbulina universaare compared. The SIMS–GSMS δ13C differences (Δ13CSIMS‐GSMS) were determined via paired analysis of hydrogen peroxide‐cleaned fragments of modern cultured specimens and of fossil specimens from deep‐sea sediments that were either untreated, sonicated, and cleaned with hydrogen peroxide or vacuum roasted. After treatment, fragments were analyzed by a CAMECA IMS 1280 SIMS instrument and either a ThermoScientific MAT‐253 or a Fisons Optima isotope ratio mass spectrometer (GSMS).

    Results

    Paired analyses of cleaned fragments of cultured specimens (n = 7) yield no SIMS–GSMS δ13C difference. However, paired analyses of untreated (n = 18) and cleaned (n = 12) fragments of fossil shells yield average Δ13CSIMS‐GSMSvalues of 0.8‰ and 0.6‰ (±0.2‰, 2 SE), respectively, while vacuum roasting of fossil shell fragments (n = 11) removes the SIMS–GSMS δ13C difference.

    Conclusions

    The noted Δ13CSIMS‐GSMSvalues are most likely due to matrix effects causing sample–standard mismatch for SIMS analyses but may also be a combination of other factors such as SIMS measurement of chemically bound water. The volume of material analyzed via SIMS is ~105times smaller than that analyzed by GSMS; hence, the extent to which these Δ13CSIMS‐GSMSvalues represent differences in analyte or instrument factors remains unclear.

     
    more » « less
  4. null (Ed.)
    Abstract The 119 Ma Dinkey Dome pluton in the central Sierra Nevada Batholith is a peraluminous granite and contains magmatic garnet and zircon that are complexly zoned with respect to oxygen isotope ratios. Intracrystalline SIMS analysis tests the relative importance of magmatic differentiation processes vs. partial melting of metasedimentary rocks. Whereas δ18O values of bulk zircon concentrates are uniform across the entire pluton (7.7‰ VSMOW), zircon crystals are zoned in δ18O by up to 1.8‰, and when compared to late garnet, show evidence of changing magma chemistry during multiple interactions of the magma with wall rock during crustal transit. The evolution from an early high-δ18O magma [δ18O(WR) = 9.8‰] toward lower values is shown by high-δ18O zircon cores (7.8‰) and lower δ 18O rims (6.8‰). Garnets from the northwest side of the pluton show a final increase in δ18O with rims reaching 8.1‰. In situ REE measurements show zircon is magmatic and grew before garnets. Additionally, δ18O in garnets from the western side of the pluton are consistently higher (avg = 7.3‰) relative to the west (avg = 5.9‰). These δ18O variations in zircon and garnet record different stages of assimilation and fractional crystallization whereby an initially high-δ18O magma partially melted low-δ18O wallrock and was subsequently contaminated near the current level of emplacement by higher δ18O melts. Collectively, the comparison of δ18O zoning in garnet and zircon shows how a peraluminous pluton can be constructed from multiple batches of variably contaminated melts, especially in early stages of arc magmatism where magmas encounter significant heterogeneity of wall-rock assemblages. Collectively, peraluminous magmas in the Sierran arc are limited to small <100 km2 plutons that are intimately associated with metasedimentary wall rocks and often surrounded by later and larger metaluminous tonalite and granodiorite plutons. The general associations suggest that early-stage arc magmas sample crustal heterogeneities in small melt batches, but that with progressive invigoration of the arc, such compositions are more effectively blended with mantle melts in source regions. Thus, peraluminous magmas provide important details of the nascent Sierran arc and pre-batholithic crustal structure. 
    more » « less
  5. Abstract Ammonites have disparate adult morphologies indicative of diverse ecological niches, but ammonite hatchlings are small (~1 mm diameter), which raises questions about the similarity of egg incubation and hatchling life mode in ammonites. Modern Nautilus is sometimes used as a model organism for understanding ammonites, but despite their outward similarities, the groups are only distantly related. Trends in ammonite diversity and extinction vulnerability in the fossil record contrast starkly with those of nautilids, and embryonic shells from Late Cretaceous ammonites are two orders of magnitude smaller than nautilid embryonic shells. To investigate possible environmental changes experienced by ammonite hatchlings, we used secondary ion mass spectrometry to analyze the oxygen and carbon isotope composition of the embryonic shells and early postembryonic whorls of five juveniles of Hoploscaphites comprimus obtained from a single concretion in the Fox Hills Formation of South Dakota. Co-occurring bivalves and diagenetic calcite were also analyzed to provide a benthic baseline for comparison. The oxygen isotope ratios of embryonic shells are more like those of benthic bivalves, suggesting that ammonite eggs were laid on the bottom. Ammonite shell immediately after hatching has more negative δ 18 O, suggesting movement to more shallow water that is potentially warmer and/or fresher. After approximately one whorl of postembryonic growth, the values of δ 18 O become more positive in three of the five individuals, suggesting that these animals transitioned to a more demersal mode of life. Two other individuals transition to even lower δ 18 O values that could suggest movement to nearshore brackish water. These data suggest that ammonites, like many modern coleoids, may have spawned at different times of the year. Because scaphites were one of the short-term Cretaceous–Paleogene extinction survivors, it is possible that this characteristic allowed them to develop a broader geographic range and, consequently, a greater resistance to extinction. 
    more » « less